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Procedural Programming

® This has been the mainstay of much scientific
programming, and it works well.

® But it can get very messy when you have a
complex program with lots of interacting
parts

® Particularly when data has to be shared and
modified between many functions
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What is Object-Oriented
Programming!?

Object-oriented programming (OOP) is a
programming paradigm that uses "objects” —
data structures consisting of data fields and
methods together with their interactions — to
design applications and computer programs.
Programming techniques may include features
such as data abstraction, encapsulation,
modularity, polymorphism, and inheritance.

Answer Ib: Ask an-expert Wikipedia 14
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What is Object-Oriented
Programming?

Characteristics

- Color, Height,Weight

Does Things

—>  Eat, Sleep, Growl, Cheer

Interaction

-»  Parents, siblings, friends

Objects are like animals: they know how to do stuff (like eat
and sleep), they know how to interact with others (like make

children), and they have characteristics (like height, weight).
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group together variables (characteristics) and functions (doing
things) in one nice, tidy package. In Python, the blueprint for
an object is referred to as a class.
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What is Object-Oriented
Programming!?

Within a class, the variables are referred to as attributes and
the functions are referred to as methodes.
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class ClassName[ (BaseClasses) ]:
“mr Documentation String]"""

[Statementl] # Executed only when class is defined
[Statement?2]

[Variablel] # “Global” class variables can be defined here
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Bear: Our first Python class

We are defining a new
>>> class Bear: class named Bear.
Note the lack of
parentheses. These are
only used if the class is
derived from other
classes (more on this
next lecture).
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Bear: Our first Python class

>>> class Bear:

«o print "The bear class is now defined."
The bear class is now defined.

>>> a = Bear

>>> g

<class main_ .Bear at 0x10041d9b0>

>>> a = Bear()

>>> g

< main_ .Bear instance at 0x100433cb0>
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Bear: Our first Python class

>>> class Bear:
print "The bear class is now defined."

By adding parenthesis,
The b 1 i defined. .
o> o = Boar we are creating a new

>>> g .
<class @ main .Bear at 0x10041d9b0> ’nStance Of the CIaSS
SO Bear.

>>> g

< main_ .Bear instance at 0x100433cb0>
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Attributes: Access, Creation,
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Object attributes are
accessed with the

€¢I

.’ (period) operator
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Attributes: Access, Creation,
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>>> class Bear:
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Methods: Access, Creation, and
(not) Deletion

>>> class Bear:

print "The bear class is now defined." Methods are defined in
the same way normal
functions are (note
that we will return to

the self object in a few
slides)
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Methods: Access, Creation, and
(not) Deletion

class Bear:
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def say hello(self):
print "Hello, world!

bear class is now defined.
a = Bear()
a.say hello

I am a bear."

Like attributes,
methods are also

accessed via the
operator. Parentheses

indicate the method

should be executed.
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The init method

>>> class Bear:

__init___is a special
Python method. It is
always run when a new
instance of a class is
created.
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print "Hello, world!

I am a bear."

__init___is a special
Python method. It is
always run when a new
instance of a class is
created.

#13



The init method

>>> class Bear:
def init (self, name):
self.name = name
def say hello(self):
print "Hello, world! I am a bear."

print “My name is %s.” % self.name __init__is a special
Python method. It is
always run when a new
instance of a class is
created.
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The init method

>>> class Bear:

def init (self, name):
self.name = name
def say_hello(self): Arguments specified
print "Hello, world! I am a bear.” L
print “My name is %s.” % self.name b)l _’nlt_ Mmust be
>>> a = Bear() PrOV|ded When

creating a new instance
of a class (else an
Exception will be
thrown)
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The init

>>> class Bear:
def init (self, name):
self.name = name
def say hello(self):
print "Hello, world!
print “My name is %s.” % self.name

>>> a = Bear()
Traceback (most recent call last):

I am a bear."

method

Arguments specified
by __init__ must be
provided when
creating a new instance
of a class (else an
Exception will be
thrown)
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The init

>>> class Bear:
def init (self, name):
self.name = name
def say hello(self):
print "Hello, world!
print “My name is %s.” % self.name

>>> a = Bear()

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

TypeError:  init () takes exactly 2

arguments (1 given)

>>> a = Bear(“Yogi”)

I am a bear."

method

Arguments specified
by __init__ must be
provided when
creating a new instance
of a class (else an
Exception will be
thrown)
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(“global™)
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declared. It is
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this before the
init  method.
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this before the
init  method.
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name instead of
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Scope: self and “class™ variables

>>> class Bear:
population = 0

def _init (self, name): The self variable is
self.name = name
Bear.population += 1

def say hello(self): d PlacehOIder for
print "Hello, world! I am a bear."” .
print “My name is %s.” % self.name the SPeCIﬁC
print “I am number %i.” % Bear.population

instance of a class.
Attributes
referenced to self
are known as
“object” attributes.
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Scope: self and “class™ variables

>>> class Bear:

population = 0
def init (self, name): .
SCIERETD & RS It should be listed
Bear.population += 1
" rint “rello, worldi I am a bear. as a required
print “My name is %s.” % self.name .
print “I am number %i.” % Bear.population argument IN a”
class methods
(even if it is not
explicitly used by
the method).
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Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name): When Ca”ing a
self.name = name
Bear.population += 1 1

def say hello(self): methOd dlreCtly
print "Hello, world! I am a bear." .
print “My name is %s.” % self.name from a SPeCIﬁC
print “I am number %i.” % Bear.population

instance of a class,

the self variable is

NOT passed
(Python handles
this for you)
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Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name): When Ca”ing a
self.name = name
Bear.population += 1 1

def say hello(self): methOd dlreCtly
print "Hello, world! I am a bear." .
print “My name is %s.” % self.name from a SPeCIﬁC
print “I am number %i.” % Bear.population

instance of a class,
the self variable is
NOT passed
(Python handles
this for you)

>>> a = Bear(“Yogi”)

#14



Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name): When Ca”ing a
self.name = name
Bear.population += 1 1

def say hello(self): methOd dlreCtly
print "Hello, world! I am a bear." .
print “My name is %s.” % self.name from a SPeCIﬁC
print “I am number %i.” % Bear.population

| instance of a class,
>>> a = Bear(“Yogi”) . .
>>> a.say_hello() the self variable is

NOT passed
(Python handles
this for you)

#14



Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name): When Ca”ing a
self.name = name
Bear.population += 1 1

def say hello(self): methOd dlreCtly
print "Hello, world! I am a bear." .
print “My name is %s.” % self.name from a SPeCIﬁC
print “I am number %i.” % Bear.population

| instance of a class,
>>> a = Bear(“Yogi”) . .
>>> a.say_hello() the self variable is

Rello, world! T am a bear. NOT passed
(Python handles
this for you)

#14



Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name):

self.name = name

Bear.population += 1
def say hello(self):

print "Hello, world!

print “My name is %s.”
print “I am number %i.”

>>> a = Bear(“Yogi”)

>>> a.say hello()

Hello, world! I am a bear.
My name is Yogi.

I am a bear."

% self.name
% Bear.population

When calling a
method directly
from a specific
instance of a class,
the self variable is
NOT passed
(Python handles
this for you)

#14



Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name):

self.name = name

Bear.population += 1
def say hello(self):

print "Hello, world!

print “My name is %s.”
print “I am number %i.”

>>> a = Bear(“Yogi”)

>>> a.say hello()

Hello, world! I am a bear.
My name is Yogi.

I am number 1.

I am a bear."

% self.name
% Bear.population

When calling a
method directly
from a specific
instance of a class,
the self variable is
NOT passed
(Python handles
this for you)

#14



Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name): When Calhng a
self.name = name
Bear.population += 1 1

def say hello(self): methOd dlreCtly
print "Hello, world! I am a bear." .
print “My name is %s.” % self.name from a SPeCIﬁC
print “I am number %i.” % Bear.population

| instance of a class,
>>> a = Bear(“Yogi”) . .
>>> a.say_hello() the self variable is

Hello, world! I am a bear.

My name is Yogi. NOT Passed

I am number 1.

>>> b = Bear("Winnie") (P)’thOn handles
this for you)

#14



Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name): When Ca”ing a
self.name = name
Bear.population += 1 1

def say hello(self): methOd dlreCtly
print "Hello, world! I am a bear." .
print “My name is %s.” % self.name from a SPeCIﬁC
print “I am number %i.” % Bear.population

| instance of a class,
>>> a = Bear(“Yogi”) . .
>>> a.say_hello() the self variable is

Hello, world! I am a bear.

My name is Yogi. NOT Passed

I am number 1.
2 boaay notle() (Python handles
this for you)

#14



Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name): When Calhng a
self.name = name
Bear.population += 1 1

def say hello(self): methOd dlreCtly
print "Hello, world! I am a bear." .
print “My name is %s.” % self.name from a SPeCIﬁC
print “I am number %i.” % Bear.population

| instance of a class,
>>> a = Bear(“Yogi”) . .
>>> a.say_hello() the self variable is

Hello, world! I am a bear.

My name is Yogi. NOT Passed

I am number 1.
2 boaay notle() (Python handles
Hello, world! I am a bear. this for you)

#14



Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name): When Calhng a
self.name = name
Bear.population += 1 1

def say hello(self): methOd dlreCtly
print "Hello, world! I am a bear." .
print “My name is %s.” % self.name from a SPeCIﬁC
print “I am number %i.” % Bear.population

| instance of a class,
>>> a = Bear(“Yogi”) . .
>>> a.say_hello() the self variable is

Hello, world! I am a bear.

My name is Yogi. NOT Passed

I am number 1.

2 boaay notle() (Python handles
Mty name 35 wimnie. this for you)

#14



Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name):

self.name = name

Bear.population += 1
def say hello(self):

print "Hello, world!

I am a bear."

print “My name is %s.” % self.name

print “I am number %i.”

>>> a = Bear(“Yogi”)

>>> a.say hello()

Hello, world! I am a bear.
My name is Yogi.

I am number 1.

>>> b = Bear("Winnie')

>>> b.say hello()

Hello, world! I am a bear.
My name is Winnie.

I am number 2.

% Bear.population

When calling a
method directly
from a specific
instance of a class,
the self variable is
NOT passed
(Python handles
this for you)

#14



Scope: self and “class™ variables

>>> class Bear:

population = 0

def init (self, name):
self.name = name
Bear.population += 1

def say hello(self):
print "Hello, world!
print “My name is %s.”

print “I am number %i.”

I am a bear."
self.name
3 Bear.population

>>> a = Bear(“Yogi”)
>>> a.say hello()

Hello, world! I am a bear.

My name is Yogi.

I am number 1.

>>> b = Bear("Winnie')
>>> b.say hello()

Hello, world! I am a bear.

My name is Winnie.
I am number 2.

Here the
bopulation variable
is incremented
each time a new
instance of the
Bear class is
created.

#14



Scope: self and “class™ variables

>>> class Bear:

population = 0

def init (self, name):
self.name = name
Bear.population += 1

def say hello(self):
print "Hello, world! I am a bear."
print “My name is %s.” % self.name
print “I am number %i.” % Bear.population

>>> a = Bear(“Yogi”)

>>> a.say hello() When Calllng

Hello, world! I am a bear.

T methods from a

I am number 1.
>>> b = Bear("Winnie')

o> b.say hello() class, a specific
s T g instance DOES
I am number 2.
need to be passed.
#H14



Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name):

self.name = name

Bear.population += 1
def say hello(self):

print "Hello, world!

print “My name is %s.”
print “I am number %i.”

>>> a = Bear(“Yogi”)

>>> a.say hello()

Hello, world! I am a bear.
My name is Yogi.

I am number 1.

>>> b = Bear("Winnie')

>>> b.say hello()

Hello, world! I am a bear.
My name is Winnie.

I am number 2.

I am a bear."
self.name
3 Bear.population

>>> ¢ = Bear("Fozzie")

When calling
methods from a
class, a specific

instance DOES
need to be passed.

#14



>>> a

Scope: self and “class™ variables

>>> class Bear:

population = 0

def init (self, name):
self.name = name
Bear.population += 1

def say hello(self):
print "Hello, world!

print “My name is %s.”
print “I am number %i.”

Bear (“Yogi”)

I am a bear."
3 self.name
3 Bear.population

>>> a.say hello()

Hello, world! I am a bear.

My name is Yogi.

I am number 1.

>>> b = Bear("Winnie')
>>> b.say hello()

Hello, world! I am a bear.

My name is Winnie.
I am number 2.

>>> ¢ = Bear("Fozzie")
>>> Bear.say hello(c)

When calling
methods from a

class, a specific
instance DOES
need to be passed.

#14



Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name):

self.name = name

Bear.population += 1
def say hello(self):

print "Hello, world!

print “My name is %s.”
print “I am number %i.”

>>> a = Bear(“Yogi”)

>>> a.say hello()

Hello, world! I am a bear.
My name is Yogi.

I am number 1.

>>> b = Bear("Winnie')

>>> b.say hello()

Hello, world! I am a bear.
My name is Winnie.

I am number 2.

I am a bear."
3 self.name
3 Bear.population

>>> ¢ = Bear("Fozzie")
>>> Bear.say hello(c)
Hello, I am a bear.

When calling
methods from a
class, a specific

instance DOES
need to be passed.

#14



Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name):

self.name = name

Bear.population += 1
def say hello(self):

print "Hello, world!

print “My name is %s.”
print “I am number %i.”

>>> a = Bear(“Yogi”)

>>> a.say hello()

Hello, world! I am a bear.
My name is Yogi.

I am number 1.

>>> b = Bear("Winnie')

>>> b.say hello()

Hello, world! I am a bear.
My name is Winnie.

I am number 2.

I am a bear."
3 self.name
3 Bear.population

>>> ¢ = Bear("Fozzie")
>>> Bear.say hello(c)
Hello, I am a bear.
My name is Fozzie.

When calling
methods from a
class, a specific

instance DOES
need to be passed.

#14



Scope: self and “class™ variables

>>> class Bear:
population = 0

def init (self, name):

self.name = name

Bear.population += 1
def say hello(self):

print "Hello, world!

print “My name is %s.”
print “I am number %i.”

>>> a = Bear(“Yogi”)

>>> a.say hello()

Hello, world! I am a bear.
My name is Yogi.

I am number 1.

>>> b = Bear("Winnie')

>>> b.say hello()

Hello, world! I am a bear.
My name is Winnie.

I am number 2.

I am a bear."
3 self.name
3 Bear.population

>>> ¢ = Bear("Fozzie")
>>> Bear.say hello(c)
Hello, I am a bear.

My name is Fozzie.

I am number 3.

When calling
methods from a
class, a specific

instance DOES
need to be passed.

#14



A Zookeeper’s Travails |

Suppose you are a zookeeper. You have three
bears in your care (Yogi, Winnie, and Fozzie), and
you need to take them to a shiny new
habitat in a different part of the zoo. However,
your bear truck can only support 300 Ibs. Can
you transfer the bears in just one trip?
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>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

>>> a = Bear("Yogi", 80)

#16



A Zookeeper’s Travails |

>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

>>> a
>>> b

Bear("Yogi", 80)
Bear ("Winnie", 100)

#16



A Zookeeper’s Travails |

class Bear:

Q ©

def init (self, name, weight):
self.name = name
self.weight = weight

= Bear("Yogi", 80)
= Bear("Winnie", 100)
= Bear("Fozzie", 115)

#16
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class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

a = Bear("Yogi", 80)
b = Bear("Winnie", 100)
c = Bear("Fozzie", 115)
my bears = [a, b, c]

#16
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Class instances in

>>> class Bear:
def init (self, name, weight): Python Can be
self.name = name .
self.weight = weight tl’eated Ill(e an)’
>>> a = Bear("Yogi", 80) Other data type:
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears = [a, b, c] they Can be

assigned to other
variables, put in
lists, iterated over,
etc.

#16
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>>> class Bear:

def init (self, name, weight):

self.name = name
self.weight = weight

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears = [a, b, c]

In iterating over
my_bears, we are
assigning the
temporary variable z
to Bear instances a, b,
and c. The weight
method is accessed

again with the .
operator.
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>>>

>>>
>>>
>>>
>>>
>>>

A Zookeeper’s Travails |

class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

a = Bear("Yogi", 80)
b = Bear("Winnie", 100)
c = Bear("Fozzie", 115)
my bears = [a, b, c]

total weight = 0

In iterating over
my_bears, we are
assigning the
temporary variable z
to Bear instances a, b,
and c. The weight
method is accessed

again with the .
operator.

#16



>>>

>>>
>>>
>>>
>>>
>>>
>>>

A Zookeeper’s Travails |

class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

a = Bear("Yogi", 80)
b = Bear("Winnie", 100)
c = Bear("Fozzie", 115)
my bears = [a, b, c]

total weight = 0
for z in my bears:

In iterating over
my_bears, we are
assigning the
temporary variable z
to Bear instances a, b,
and c. The weight
method is accessed

again with the .
operator.

#16
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>>>
>>>
>>>
>>>
>>>
>>>
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class Bear:

def init (self, name, weight):

self.name =

name

self.weight = weight

a = Bear("Yogi", 80)
b = Bear("Winnie", 100)
c = Bear("Fozzie", 115)
my bears = [a, b, c]
total weight = 0
for z in my bears:

total weight += z.weight

In iterating over
my_bears, we are
assigning the
temporary variable z
to Bear instances a, b,
and c. The weight
method is accessed

again with the .
operator.

#16



>>>

>>>
>>>
>>>
>>>
>>>
>>>

A Zookeeper’s Travails |

class Bear:

def init (self, name, weight):

self.name =

name

self.weight = weight

a = Bear("Yogi", 80)
b = Bear("Winnie", 100)
c = Bear("Fozzie", 115)
my bears = [a, b, c]
total weight = 0
for z in my bears:

total weight += z.weight

In iterating over
my_bears, we are
assigning the
temporary variable z
to Bear instances a, b,
and c. The weight
method is accessed

again with the .
operator.

#16
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>>>
>>>
>>>
>>>
>>>
>>>

>>>
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class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

a = Bear("Yogi", 80)
b = Bear("Winnie", 100)
c = Bear("Fozzie", 115)
my bears = [a, b, c]

total weight = 0
for z in my bears:
total weight += z.weight

total weight < 300

In iterating over
my_bears, we are
assigning the
temporary variable z
to Bear instances a, b,
and c. The weight
method is accessed

again with the .
operator.

#16
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>>> class Bear:

def init (self, name, weight):

self.name = name
self.weight = weight

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)

>>> my bears = [a, b, c]
>>> total weight = 0
>>> for z in my bears:
total weight += z.weight

>>> total weight < 300
True

In iterating over
my_bears, we are
assigning the
temporary variable z
to Bear instances a, b,
and c. The weight
method is accessed

again with the .
operator.

#16
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Consider now a (marginally) more realistic
scenario, where a bear’s weight changes
when he/she eats and hibernates

H#I17
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Object methods can
alter other properties
of the object
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>>> class Bear:

Object methods can
alter other properties
of the object

#18
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>>> class Bear:
def init (self, name, weight):

Object methods can
alter other properties
of the object

#18
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>>> class Bear:
def init (self, name, weight):
self.name = name

Object methods can
alter other properties
of the object

#18



A Zookeeper’s Travails |l

>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

Object methods can
alter other properties
of the object

#18
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>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount): Ob]eCt methOdS can
alter other properties
of the object

#18
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>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount): Ob]eCt methOdS can
self.weight += amount
alter other properties
of the object

#18
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>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount): Oblect methods can
self.weight += amount
def hibernate(self): alter other properties

of the object

#18
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>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount): :
self.weight += amount ObleCt methOdS can
def hibernate(self): alter other properties

self.weight /= 1.20

of the object

#18
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>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount): :
self.weight += amount ObleCt methOdS can
def hibernate(self): alter other properties

self.weight /= 1.20

of the object

#18



A Zookeeper’s Travails |l

>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount): Oblect methods can
self.weight += amount
def hibernate(self): alter other properties

self.weight /= 1.20

of the object

>>> a = Bear("Yogi", 80)

#18
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>>> class Bear:

>>> a
>>> b

def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount): Oblect methods can
self.weight += amount
def hibernate(self): alter other properties

self.weight /= 1.20

of the object

Bear ("Yogi", 80)
Bear ("Winnie", 100)
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>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount): Oblect methods can
self.weight += amount
def hibernate(self): alter other properties

self.weight /= 1.20

of the object

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)

#18
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>>> class Bear:
def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount): Oblect methods can
self.weight += amount
def hibernate(self): alter other properties

self.weight /= 1.20

of the object

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

#18
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>>> class Bear:

.« def init (self, name, weight):
50 ¢ self.name = name

.« self.weight = weight

S def eat(self, amount):

.« self.weight += amount

«oe def hibernate(self):

“ee self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears=[a, b, c]

#18
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>>> class Bear:

def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount):
self.weight += amount

def hibernate(self):
self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

Yogi finds several picnic baskets to snack on.
#18
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>>> class Bear: >>> a.welight
def init (self, name, weight):
self.name = name
self.weight = weight
def eat(self, amount):
self.weight += amount
def hibernate(self):
self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

Yogi finds several picnic baskets to snack on.
#18
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>>> class Bear: >>> a.welight
def init (self, name, weight): 80
self.name = name
self.weight = weight
def eat(self, amount):
self.weight += amount
def hibernate(self):
self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

Yogi finds several picnic baskets to snack on.
#18
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>>> class Bear: >>> a.welight
def init (self, name, weight): 80
self.name = name >>> a.eat(20)

self.weight = weight
def eat(self, amount):

self.weight += amount
def hibernate(self):

self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears=[a, b, c]

Yogi finds several picnic baskets to snack on.
#18
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>>> class Bear: >>> a.welight
def init (self, name, weight): 80

self.name = name >>> a.eat(20)

self.weight = weight >>> a.welight

def eat(self, amount):
self.weight += amount

def hibernate(self):
self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears=[a, b, c]

Yogi finds several picnic baskets to snack on.
#18
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>>> class Bear:

def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount):
self.weight += amount

def hibernate(self):
self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears=[a, b, c]

Yogi finds several picnic baskets to snack on.

>>>

80
>>>

>>>
100

a.weight

a.eat(20)
a.weight

#18
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>>> class Bear:

.« def init (self, name, weight):
50 ¢ self.name = name

.« self.weight = weight

S def eat(self, amount):

.« self.weight += amount

«oe def hibernate(self):

“ee self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears=[a, b, c]

>>>

80
>>>

>>>
100

a.weight

a.eat(20)
a.weight

#18
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>>> class Bear:

def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount):
self.weight += amount

def hibernate(self):
self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

>>>

80
>>>

>>>
100

a.weight

a.eat(20)
a.weight

Winnie eats a large pot of honey, while Fozzie hibernates

#18
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>>> class Bear:

def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount):
self.weight += amount

def hibernate(self):
self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

>>>

80
>>>

>>>

100
>>>

o))

.weight

.eat(20)
.weight

.eat(10)

Winnie eats a large pot of honey, while Fozzie hibernates
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A Zookeeper’s Travails |l

>>> class Bear:

def init (self, name, weight):
self.name = name
self.weight = weight

def eat(self, amount):
self.weight += amount

def hibernate(self):
self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears=[a, b, c]

>>>
80

>>>
>>>
100
>>>
>>>

o))

Q

.weight

.eat(20)
.weight

.eat(10)
.hibernate()

Winnie eats a large pot of honey, while Fozzie hibernates
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>>> class Bear:

.« def init (self, name, weight):
50 ¢ self.name = name

.« self.weight = weight

S def eat(self, amount):

.« self.weight += amount

«oe def hibernate(self):

“ee self.weight /= 1.20

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears=[a, b, c]

>>>
80

>>>
>>>
100
>>>
>>>

a.weight

a.eat(20)
a.weight

b.eat(10)
c.hibernate()
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>>> class Bear: >>> a.welight

oo - def init (self, name, weight): 80

cee self.name = name >>> a.eat(20)

«oe self.weight = weight >>> a.welight

500 def eat(self, amount): 100

.« self.weight += amount >>> b.eat(10)

.« def hibernate(self): >>> c.hibernate()
e self.weight /= 1.20 >>> total weight = 0

>>> a = Bear("Yogi", 80)
>>> b = Bear("Winnie", 100)
>>> ¢ = Bear("Fozzie", 115)
>>> my bears=[a, b, c]
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>>> class Bear:

.« def init (self, name, weight):
50 ¢ self.name = name

.« self.weight = weight
S def eat(self, amount):
.« self.weight += amount
«oe def hibernate(self):

“ee self.weight /= 1.20
>>> a = Bear("Yogi", 80)

>>> b = Bear("Winnie", 100)

>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

>>>
80

>>>
>>>
100
>>>
>>>
>>>
>>>

a.weight

a.eat(20)
a.weight

b.eat(10)
c.hibernate()
total weight = 0
for z in my bears:
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>>> class Bear:

.« def init (self, name, weight):
50 ¢ self.name = name

.« self.weight = weight
S def eat(self, amount):
.« self.weight += amount
«oe def hibernate(self):

“ee self.weight /= 1.20
>>> a = Bear("Yogi", 80)

>>> b = Bear("Winnie", 100)

>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

>>>
80

>>>
>>>
100
>>>
>>>
>>>
>>>

a.weight

a.eat(20)
a.weight

b.eat(10)
c.hibernate()
total weight = 0
for z in my bears:
total weight += z.weight
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>>> class Bear:

.« def init (self, name, weight):
50 ¢ self.name = name

.« self.weight = weight
S def eat(self, amount):
.« self.weight += amount
«oe def hibernate(self):

“ee self.weight /= 1.20
>>> a = Bear("Yogi", 80)

>>> b = Bear("Winnie", 100)

>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

>>>
80

>>>
>>>
100
>>>
>>>
>>>
>>>

a.weight

a.eat(20)
a.weight

b.eat(10)
c.hibernate()
total weight = 0
for z in my bears:
total weight += z.weight

#18



A Zookeeper’s Travails |l

>>> class Bear:

.« def init (self, name, weight):
50 ¢ self.name = name

.« self.weight = weight
S def eat(self, amount):
.« self.weight += amount
«oe def hibernate(self):

“ee self.weight /= 1.20
>>> a = Bear("Yogi", 80)

>>> b = Bear("Winnie", 100)

>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

>>>
80

>>>
>>>
100
>>>
>>>
>>>
>>>

>>>

a.weight

a.eat(20)
a.weight

b.eat(10)
c.hibernate()
total weight = 0
for z in my bears:
total weight += z.weight

total weight < 300
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>>> class Bear:

.« def init (self, name, weight):
50 ¢ self.name = name

.« self.weight = weight
S def eat(self, amount):
.« self.weight += amount
«oe def hibernate(self):

“ee self.weight /= 1.20
>>> a = Bear("Yogi", 80)

>>> b = Bear("Winnie", 100)

>>> ¢ = Bear("Fozzie", 115)

>>> my bears=[a, b, c]

>>>
80

>>>
>>>
100
>>>
>>>
>>>
>>>

>>>

a.weight

a.eat(20)
a.weight

b.eat(10)
c.hibernate()
total weight = 0
for z in my bears:
total weight += z.weight

total weight < 300

False
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>>> class Bear: >>> a.welight
def init (self, name, weight): 80
self.name = name >>> a.eat(20)
self.weight = weight >>> a.welight
def eat(self, amount): 100
self.weight += amount >>> b.eat(10)
def hibernate(self): >>> c.hibernate()
self.weight /= 1.20 >>> total weight = 0
o oo >>> for z in my bears:
>>> a = Bear("Yogi", 80) «oe total weight += z.weight
>>> b = Bear("Winnie", 100) .«
>>> ¢ = Bear("Fozzie", 115) >>> total weight < 300
>>> my bears=[a, b, c] False

As a result, they are too heavy for the truck
#18



For the remaining skeptics ...

Because of the way Python is set up, you have been
using object-oriented techniques this entire time!



For the remaining skeptics ...

>>> a = Polygon("Polly")

InStantla—tlon (Creating an instance of the class
Polygon) >>> b = “Polygon”
>>> type(a) >>> type(b)

Types

<type 'instance'>
>>> type(type(a))
<type 'type'>

<type 'str'>
>>> type(type(b))
<type 'type'>

Methods

>>> a.print name()
Hi, my name is Polly.
>>> a.perimeter ()

0

>>> b.upper/()
POLYGON

>>> b.replace(“gon”,
Polywog

llwogll )

Because of the way Python is set up, you have been
using object-oriented techniques this entire time!




A More Relevant
Example: Simple N-body
Code

OOPI-nbody.ipynb



